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Abstract—Explainability has gained significant attention across
various domains, yet it remains relatively underexplored in the
field of music, particularly in Music Emotion Recognition. This
paper presents XMERApp; a web application designed to provide
interpretability for a deep learning model that classifies classical
and acoustic guitar into four emotional states. Our system em-
ploys a deep learning architecture trained on improvised musical
performances to classify emotions, while providing comprehen-
sive explainability through multiple complementary approaches.
The application offers users three levels of interpretability: (1)
detailed breakdowns of prediction probabilities across different
emotion categories, enabling users to understand the confidence
and uncertainty in model predictions; (2) temporal visualization
of emotion evolution throughout the improvisation, revealing how
the model’s understanding of emotional content develops over
time; and (3) LIME-based explanations that highlight specific
spectrogram regions most influential to the model’s decisions
within focused time windows. Additionally, users can listen
to the specific spectrogram regions identified as critical for
the emotion classification, gaining insights into which parts of
the performance and frequency ranges contributed the most
to the model’s output. The web-based nature of XMERApp
enables deployment across many devices, including smart musical
instruments, enhancing the interpretability of intelligent features
embedded within them.

Index Terms—Explainable Artificial Intelligence, Music Infor-
mation Retrieval, Emotion Recognition

I. INTRODUCTION

Over the past two decades, deep learning (DL) has pro-
foundly advanced the field of Music Information Retrieval
(MIR), but despite their strong performance, DL models tend
to be complex and opaque, making it difficult to interpret their
internal decision-making processes. Transparent models offer
better interpretability but often lack the capacity to deliver high
accuracy in complex tasks [1]. This trade-off has motivated the
development of model-agnostic explainability techniques that
seek to provide insights into black-box DL models without
sacrificing performance [2].

While interpretability may be less critical in MIR than in
domains like autonomous driving and medicine, it still offers
valuable benefits. Model designers can gain a deeper under-
standing of model functioning, identify key input features,
and develop more efficient models with fewer parameters and

h Equal Contribution

faster inference times. End users, including musicians, can
benefit even more from explanations that clarify the reasons
behind model outputs and enable interactive feedback.

One of the approaches to deal with explainability in the
music domain is to borrow techniques from other domains
(e.g., computer vision) and try to adapt them to MIR tasks.
This was the case for Mishra et al. [3], who extended
Local Interpretable Model-agnostic Explanations (LIME) [4]
for singing voice detection across temporal, frequency, and
time-frequency domains, demonstrating that accuracy does
not guarantee trustworthiness. Then, Haunschmid et al. [5]
improved upon LIME by generating listenable explanations
through source separation perturbations. Other techniques in-
clude auralization-based explanation methods [6], to convert
convolutional features into audio signals, and using a two-step
approach for Music Emotion Recognition (MER) combining
convolutional feature extraction with an interpretable linear
model [7], other than the layer-wise relevance propagation [8].
However, existing research has largely overlooked the inter-
pretability of DL models in MER.

Emotion recognition is a key task in MIR [9], and has been
investigated in the context of smart musical instruments [10],
hinting at how MER can be integrated into an Internet of
Musical Things (IoMusT) ecosystem.

In this paper, we present XMERApp, a webapp for explain-
able MER for non-technically inclined users and musicians.
XMERApp integrates a DL model for classification of four
main emotions (i.e., aggressiveness, relaxation, happiness, and
sadness, covering the four quadrants of the Arousal-Valence
space [11]). It provides three levels of explainability features:
(i) the primary emotion associated with the entire musical
excerpt, along with the per-class confidence scores; (ii) the
temporal evolution of the recognition results; and (iii) expla-
nations generated using LIME [4], which highlight the specific
regions of the spectrogram that were most influential in the
model’s decisions.

Notice that, although some attempts have been made to
explain MER systems (e.g., [7]), to the best of our knowledge,
no contributions have focused on explaining MER models by
adapting LIME and by providing three distinct explanation
perspectives.

The main page of the application is shown in Fig. 1. The
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We liked your song so much that we ran it through a Neural
Network (what is that?) that tries to understand its emotional
content.

16_happy_i1_steelstring-
guitar_DavBen_fingers_26200623_1752151162.wav

Breathtaking!

The Artificial model only understand: : Aggl
Relaxedness, and Sadness.

And the winner is... & @ ©
Overall Emotion: Relaxed

You can listen to it again to see whether you agree or not:
» 0:00/0:33 = o i

Want to know more about how shure the model was? Click the
Show Distribution button below.

Show Distribution

Fig. 1. First page of the explanation section of XMERApp. The app shows
the overall classification and allows users to listen back to the recorded audio
tune. The text appears gradually, paragraph by paragraph.

source code for XMERApp is made available as open-source
in the project repository!

II. METHODOLOGY

The proposed explainable MER application enables mu-
sicians to record an improvisation or load a corresponding
audio file; it processes the recorded signal with a DL MER
classifier, and offers several levels of interactive explanations.
The following subsection details the explainability features
integrated in the webapp.

A. Explainability Integration

The explanations of the model’s behavior integrated in
XMERApp are organized into three levels. First, per-class
confidence scores show the model’s certainty for each emo-
tion. Second, per-segment explanations reveal how emotional
predictions evolve over time. Third, LIME-based interpreta-
tions highlight the spectrogram regions most influential to the
model’s decisions and enable the user to listen to them. The
following subsections describe each level in detail.

1) Per-Class Confidence: While the concepts of classi-
fication techniques and MER may be well understood by
technologists, XMERApp is intended for musicians who can
be non-technically inclined, or may just not have been ex-
posed to MER concepts. In particular, in previous user-studies
with musicians (i.e., [10]), we found that many were asking
questions about how a machine was understanding emotions,

Thttps://github.com/cimil/explainable- music-emotion-recognition-app

“how sure it is”, and what its constraints were (i.e., how
many emotions it “knows”, or how granular its understanding
or emotional content was). Therefore, the first and highest-
abstraction-level explanation—following the classification of
the overall emotion of a recorded tune— consists of exposing
the user to the following:

1) The classes of emotion understood by the model, and
how it could lack fine granularity in describing the
piece’s emotional content.

2) Per-class confidence as percentages.

The domain of emotion categories is defined by the dataset,
while the per-class confidence is represented by the soft-
max output of the model. These outputs are not calibrated
probabilities but can be interpreted as relative indicators of
the model’s confidence across the different emotion classes.
Future versions of the application could further refine these
confidence estimates by introducing a calibration phase for
the model output.

The first level of explanation can be seen in Figs. 1 and 2.

You can listen to it again to see whether you agree or not:
» 0:00/0:33 = O i

Emotion Distribution
Aggressive 13.0%
Happy 12.5%
Relaxed 71.5%

Sad 3.0%

But we can tell you more.

This Al model (the neural network) looks at pieces of 3 seconds of
audio at a time, so we can show you what the model thought about
each part of the song.

Show Waveform

Fig. 2. A first level of explainability is provided by a bar chart displaying
the pseudo probability values of each emotional state for the entire recording.
The domain of emotions understood by the classifier is presented earlier (see
Fig. 1).

2) Per-Segment Explanation: Following the introductory
information about the model and its confidence, users are
exposed to how the model classifies 3-second segments (also
called slices) of audio, producing a “winning emotion” for
each segment, as well as the confidence scores for the four
categories. Per-segment winning categories are overlaid on the
waveform, while confidence scores are displayed in a second
diagram with connecting lines, showing the temporal evolution
of the MER prediction (see Fig. 3).

Moreover, each segment in the waveform diagram can be
clicked, opening a page with detailed information on the se-
lected segment (see Fig. 4). Here, users can see the confidence
score for each emotion category for the segment, listen to
the isolated segment, and access the LIME-based explanation
described in the next section.

Notice that this resolution provides interesting insights into
the piece and resembles what a real listener might experience
in practice: a musical piece can convey a specific emotion
when heard in its entirety, or it can evoke different emotions
when small segments are analyzed in isolation, without the
context of the whole composition.
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This Al model (the neural network) looks at pieces of 3 seconds of
audio at a time, so we can show you what the model thought about
each part of the song.
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Fig. 3. Per-segment winning emotion and temporal evolution of the model’s
confidence with each category.
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Fig. 4. Detailed view of a 3-second long slice of the improvisation.

3) Per-Segment LIME: LIME is a widely adopted ex-
plainability technique designed to provide local, human-
understandable insights into the predictions made by complex
machine learning models [4].

In essence, LIME explains which features are most relevant
for the classification of a specific input sample by following

these steps. First, it generates a set of perturbed samples
that are similar to the original one, typically by selectively
altering (e.g., turning on or off) some of its features. These
perturbed samples are then labeled using the original model.
Finally, an inherently interpretable model (such as a linear
model or a decision tree) is trained on this newly generated
dataset. By analyzing this interpretable model, it becomes
possible to assess the contribution of each input feature to
the original prediction. In the case of images, these features
may correspond to specific regions or superpixels.

In the context of our work, we applied LIME to interpret the
decisions made by the DL model when classifying emotions
from musical excerpts.

What did the neural network found in the spectrogram that was so
telling?

We can run an Al Explainability method to understand which area
of the spectrogram was found to be so Relaxed

We can try with LIME (Local Interpretable Model-Agnostic

Explanations)
Go with LIME @

This spectrogram has been analyzed by LIME

The darker red area of the spectrogram is the area that, according to the classifier, most
represent the emotion Relaxed in this slice.
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Fig. 5. View of the Interface for LIME explanations.

To adapt LIME for spectrogram-based audio classification,



we designed a custom segmentation scheme for the log mel
spectrograms. Each spectrogram, corresponding to a 3-second
audio segment, was divided into 12 non-overlapping regions
by dividing the time axis into three equal parts and the fre-
quency axis into four bands. The frequency bands were defined
as follows: low (below 250 Hz), mid-low (250-500 Hz), mid-
high (500-2000 Hz), and high (above 2000 Hz). These ranges
align with commonly observed roles of frequency content in
music, where lower frequencies are typically associated with
rhythmic and bass elements, mid frequencies with melodic and
harmonic content, and higher frequencies with timbral charac-
teristics such as brightness and articulation. This segmentation
enabled us to localize the model’s attention across both the
temporal and spectral dimensions. LIME returns a ranked
list of the spectrogram regions based on their contribution
to the model’s output. This ranking provides interpretable
insights into which portions of the spectrogram were most
influential in the classification process, as inferred by the
classifier. Furthermore, by isolating specific time segments and
frequency bands, we were able to reconstruct and listen to the
corresponding audio components. The original audio sample
is preserved and then segmented and filtered according to the
information provided by LIME regarding the most relevant
regions. This enables a direct auditory analysis of the features
driving the model’s decision.

B. Dataset and Preprocessing

Our classifier was trained on the dataset described in [12],
which consists of 391 original short guitar compositions
obtained by musicians improvising on acoustic and classical
guitars while trying to convey a specific emotion. The audio
excerpts vary in length, ranging from 12.4 seconds to 75.5
seconds. The ground truth includes four possible emotion
labels—aggressive, relaxed, happy, and sad.

In order to obtain the label for each piece, each track was
rated by 16 listeners using a seven-point scale from —3 to
+3 for each of the four emotions. For example, a rating of
(3,—3,1,0) indicates that a listener perceived the piece as
strongly aggressive, not relaxed at all, slightly happy, and
emotionally neutral in terms of sadness.

Therefore, as a first step, we averaged the 16 listener
ratings for each piece and assigned the emotion with the
highest average score as the label for classification, thus
formulating a multi-class classification problem. Four compo-
sitions were excluded because they elicited multiple emotions
with equal maximum scores, reflecting ambivalent emotional
content [12].

For the preprocessing phase, each audio file was down-
sampled to 22,050 Hz and segmented into 3-second clips, as
recommended in [12]. We then extracted log mel spectrograms
from these segments using a short-time Fourier transform
with a frame size of 2048 samples, a hop length of 512
samples, and 128 mel bands-parameters commonly used in
Music Information Retrieval tasks (e.g., [13]).

C. Neural Network Architecture

The classification model is a Convolutional Neural Network
(CNN) implemented using the Keras API with a TensorFlow
backend. Its structure resembles models commonly used in
MIR tasks [13], [14], and the main hyperparameters were
optimized through multiple rounds of random search.

The network architecture comprises five convolutional lay-
ers with 16, 32, 32, 64, and 64 filters, respectively. Each
convolutional layer uses 3 x 3 kernels with rectified linear unit
(ReLU) activations, followed by a max-pooling layer with a
2 x 2 window and a stride of 2, which progressively reduces
the spatial dimensions and computational complexity. Batch
normalization is applied after each convolutional layer to
stabilize and accelerate the training process. The convolutional
stack is followed by a fully connected dense layer with 32
units, and a dropout rate of 0.5 is applied to reduce overfitting.

The model is trained using the Adam optimizer [15] with
a learning rate of 1 x 10~°. Sparse categorical cross-entropy
is used as the loss function. Training is conducted over 50
epochs with a batch size of 64.

The trained model can be found in the same project repos-
itory referenced earlier in the footnote.

D. Web Application Architecture

XMERApp was developed as a webapp, employing a
Python Flask backend, and an HTML/CSS/JavaScript frontend
interface. The Python backend eases the process of inference
for the MER model, which is a TensorFlow/Keras model that is
loaded from an HDFS5 file. Audio recording is offered through
the JACK-Python integration when running locally, but loading
of audio files is provided through the Javascript frontend,
enabling deployment to a webserver.

ITII. CLASSIFICATION RESULTS

We used 20% of the entire dataset as a test set, and 20% of
the remaining samples for validation. We ensured that pieces
performed by the same musicians were included only in either
the training or test set, but not both, to avoid the so-called artist
effect, where the model learns individual performers’ unique
styles, limiting its generalization [16], [17].

As previously mentioned, each audio file was divided into
3-second segments before preprocessing. Predictions for each
segment were then aggregated using a soft-voting technique
to compute the classification accuracy at the full piece level.

The resulting accuracy at the segment and song level (i.e.,
after soft-voting) is 53.12% and 58.33%, respectively. In
Table I, we report the classification metrics associated with the
proposed model. Note that the table refers to results computed
at the segment level.

Table I shows that the model performs best on the Aggres-
sive class, with high recall (82.3%) and Fl1-score (0.697). In
contrast, the Happy class is the most challenging, with a recall
of only 28.1%. The Relaxed and Sad classes show moderate
performance. Overall, the segment-level accuracy is 53.1%,



TABLE I
SEGMENT-LEVEL CLASSIFICATION REPORT

Class Precision Recall F1l-score Support
Aggressive 0.605 0.823 0.697 147
Relaxed 0.493 0.659 0.564 208
Happy 0.547 0.281 0.371 146
Sad 0.488 0.341 0.401 173
Accuracy 0.531 674
Macro Avg 0.533 0.526 0.508 674
Weighted Avg 0.528 0.531 0.509 674

reflecting the difficulty of the task and the limited separability
between classes.

While the performance of the current model is modest, the
proposed XMERApp allows users to easily replace the classi-
fication model, enabling the integration of higher-performing
TensorFlow models. This also includes using different model
types, which is possible because LIME treats the model as
a black box and therefore does not require a specific model
typology (i.e., the CNN in our case) to function.

IV. CONCLUSION AND FUTURE WORK

This work presents a web application for explainable MER
for guitar performances. The integration of various levels
of explainability, including LIME, provides valuable insights
into the model’s decision-making process, aimed at making
the system more understandable for both researchers and
musicians. An early informal evaluation with musicians pro-
vided promising feedback on the gradual introduction to the
explainability concepts of XMERApp granted by the interface.
The main limitation of the current stage of this work is the
lack of an in-depth evaluation of the app’s functionality, along
with the relatively low accuracy of the model employed, which
can be attributed to the challenging nature of music emotion
classification on a limited dataset. Future work will focus on
a more in-depth model search, exploring techniques such as
data augmentation and transfer learning to improve the model’s
accuracy. In parallel, we plan to conduct user studies to assess
the app’s explainability and improve usability. Finally, while
current explainability features are limited to LIME, we aim to
integrate additional methods such as SHAP and Grad-CAM,
and to combine them into a robust ensemble framework.
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