
Real-Time Playing Technique Recognition

Embedded in a Smart Acoustic Guitar

Domenico Stefani1* and Luca Turchet1

1Department of Information Engineering and Computer Science,
University of Trento, Via Sommarive , 9, Trento, 38123, Italy.

*Corresponding author(s). E-mail(s): domenico.stefani@unitn.it;
Contributing authors: luca.turchet@unitn.it;

Abstract

The integration of real-time music information retrieval techniques into musical
instruments is a crucial step towards smart musical instruments that can rea-
son about the musical context. This paper presents a real-time guitar playing
technique recognition system for a smart electro-acoustic guitar. The proposed
system comprises a software recognition pipeline running on a Raspberry Pi
4 and is designed to listen to the guitar’s audio signal and classify each note
into eight playing techniques, both pitched and percussive. Real-time playing
technique information is used in real-time to allow the musician to control wire-
lessly connected stage equipment during performance. The recognition pipeline
includes an onset detector, feature extractors, and a convolutional neural classi-
fier. Four pipeline configurations are proposed, striking different balances between
accuracy and sound-to-result latency. Results show how optimal performance
improvements occur when latency constraints are increased from 15 to 45 ms,
with performance varying between pitched and percussive techniques based on
available audio context. Our findings highlight the challenges of generaliza-
tion across players and instruments, demonstrating that accurate recognition
requires substantial datasets and carefully selected cross-validation strategies.
The research also reveals how individual player styles significantly impact
technique recognition performance.

Keywords: Music Information Retrieval, Embedded Audio, Real-time Signal
Processing, Playing Techniques

1



1 Introduction

The convergence of the Internet of Things [1] with sound and music computing [2]
has fostered the emergence of computing and networking paradigms such as the Inter-
net of Musical Things (IoMusT) [3], which offers to bridge the technological and
creative potentials of networked sound and musical devices. IoMusT refers to net-
works of interconnected musical devices that can sense, process, and exchange sound
and music-related data, enabling new forms of musical interaction and collaboration.
These devices include Smart Musical Instruments (SMIs) [4] and other music-related
objects [5, 6]. SMIs represent a key component of the IoMusT and have been defined as
a family of Digital Musical Instruments (DMIs) characterized by their self-contained
nature and the use of sensors, actuators, embedded intelligence, as well as network
connectivity that allows these to become “Musical Things” [7].

Music Information Retrieval (MIR) is the research field that investigates the
retrieval of musical features and music-related information. MIR algorithms are a key
feature for SMIs, as they are instrumental to the constitution of embedded intel-
ligence by enabling “reasoning” about the musical context. In particular, real-time
Music Information Retrieval (RT-MIR) algorithms extract musical properties from
musical signals as they are generated by the musician. Such information can then be
immediately repurposed to trigger, affect, or control in-device processes such as sound
synthesis. Alternatively, it can be shared with a network of other SMIs and Musi-
cal Things. Wirelessly shared musical properties can be used to control elements of a
performance such as stage-lighting effects, video effects, or virtual effects in extended-
reality performances [8]. Of crucial importance for RT-MIR systems - along with their
accuracy - is their latency, which refers to the delay between the input signal and
when the relevant properties (“results”) are extracted. RT-MIR methods are under
more stringent requirements than offline MIR, as their computation time and other
delays, as well as precision and accuracy, are under scrutiny. Moreover, computation
time is frequently determined by the capabilities of the computing device executing
the algorithm.

In this paper, we contribute to this growing domain with the development of a
real-time playing technique recognition system embedded within a smart acoustic gui-
tar prototype (see Figures 1 and 2). During a performance, the recognition system
detects notes in the audio signal and classifies them according to its knowledge of eight
distinct playing techniques, among pitched and percussive techniques on the acous-
tic guitar. Four different configurations of the recognition system are analyzed, each
corresponding to a different accuracy-latency tradeoff. The recognition is performed
on a small resource-constrained Single-board Computer (SBC) that can be embedded
into the instrument. The smart guitar prototype is integrated into a proof-of-concept
IoMusT environment, with in-device sound synthesis alongside wirelessly controlled
projections and stage effects.

We conduct three main experiments to get a deeper understanding of the sys-
tem by assessing its performance in different scenarios. For Experiment 1 we set to
evaluate accuracies and latencies achieved by the proposed recognition system with
different size of the context window. For Experiment 2, we set to evaluate the gen-
eralization performance over multiple guitars and players. Moreover, we set to verify

2



Fig. 1 Prototype of smart guitar connected to the playing technique recognition system. On the
lower left, the image shows a Raspberry Pi 4 with a HiFiBerry audio hat and enclosure attached
to the instrument. The embedded computer receives power from a USB power bank and the audio
signal from the guitar’s transducers, which include a piezoelectric pickup and an internal condenser
microphone.

whether the current task is subject to confounding factors [9] akin to the artist and
album effects [10, 11] identified in other music classification tasks. These effects refer
to the artificial inflation of classification performances caused by validation strategies
that allow the same artists or albums in both training and testing recordings. For our
task, performer-instrument pairs in the dataset are natural data groups that could
represent a confounding factor if not properly separated. We refer to the potential
effect as performer-instrument effect and set out to assess whether it has an impact
on the current task. Finally, for Experiment 3, we evaluate the performance when spe-
cializing to one guitar and the impact of individuality in the playing style of different
performers [12] on recognition.

The three experiments aim to evaluate whether intuitively existing effects
(performer-instrument effect, performer individuality) impact a timbre-based
approach to real-time playing technique recognition, particularly with very short signal
context.

The remainder of the paper is organized as follows. In Section 2, we introduce
the background and review related works on guitar augmentations, IoMusT, gui-
tar technique recognition, and percussive fingerstyle recognition. Section 3 describes
the methodology, including the hardware, and software used. Section 4 presents the
dataset used for evaluation and three different experiments conducted. In Section 5 we
present and discuss the results of the experiments. Finally, we draw our conclusions
in Section 6.

3



Fig. 2 Proof-of-concept IoMusT environment in which the proposed system was integrated. On the
left, the image shows the processing performed inside the SBC, which includes wireless control (e.g.,
start/stop), playing technique recognition, wireless communication of the results, and internal sound
synthesis influenced by the recognition results. The predicted technique was shared through Open
Sound Control (OSC) messages in a local network and used to control projected visuals and stage
effects (i.e., moving-head lights and a smoke machine).

2 Background

2.1 Guitar Technology and Augmentations

In the last 50 years, the evolution of the guitar as an instrument has benefited from
advancements in the field of electronics and computer science. In particular, digital
technology enabled the use of computing devices for advanced signal processing and
fostered the creation of many DMIs. This made it possible to extend the creative
possibilities of several instruments, including the guitar, through sensors, actuators,
or simply clever signal-processing techniques. These have also been referred to as
Augmented Musical Instruments (AMIs), and augmented guitars respectively, in the
field of New Interfaces for Musical Expression (NIME) [13].

Augmenting a musical instrument often involves the use of a computing unit to
process audio or sensor signals, and this can be either an external device (e.g., laptop)
or an embedded device. Due to the computing power constraints of embedded devices,
PCs have been widely used to implement non-embedded solutions for AMIs. In the
case of augmented guitars, projects that involved the use of PCs as computing units
include Puckette’s SMECK guitar [14], the Mobile Wireless Augmented Guitar [15],
the Multimodal Guitar [16], the guitar performance visualizer by Angulo et al. [17],
Lähdeoja’s augmented guitar [18] and both GuiaRT and GuitarAMI [19]. Despite the
quick prototyping capabilities of PC-based augmentations, the use of a separate com-
puting unit makes for cumbersome performance setups with laptops, audio interfaces,
and either inconvenient cables or wireless connectivity with compromises on audio
quality [15]. Other closed-source/commercial solutions include many MIDI guitars,

4



the Fishman Triple Play1 pickup, Roland GR/SY systems2, and AXON USB sys-
tems3, which still rely on a separate processing unit such as a computer, synthesizer,
or pedalboard.

Examples of embedded guitar augmentations are instead provided by instruments
such as the Line 6 Variax4, Fender VG5, and Gibson Firebird X6. These offered the
possibility of emulating different stringed instruments or adding effects through inter-
nal audio processing, freeing up the guitarist from the need for additional hardware
and complex setups. These are, however, often closed systems that are limited to
predefined sets of modeling algorithms and effects. A more in-depth review of guitar
augmentation technologies is beyond the scope of this paper and can be found in [20].

Some of the core attributes of AMIs are shared with the concept of Smart Musical
Instruments, which is described in the next section.

2.2 IoS, IoMusT and Smart Musical Instruments

The concept of IoMusT was introduced in [3] as an extension of the concept of Internet
of Things (IoT) focused on the technological infrastructure that enables the creation
of ecosystems of interconnected devices that allow interactions between musicians and
audiences.

A prominent example of a musical thing in the IoMusT is that of SMIs [7], a family
of interoperable musical instruments equipped with sensing and actuation capabili-
ties, along with embedded reasoning abilities and wireless interconnecting technology.
One of the early examples in this class of instruments was the Sensus smart guitar by
Elk Audio7, which was equipped with various sensors, physical controls, wireless con-
nectivity devices, and actuators. Sensus processed the audio signal internally and it
used wireless network connections for both audio and control signals. Other relevant
examples of smart guitars are those developed by HyVibe8 and Lava Music9.

The development of SMIs has been aided by the availability of new embedded
platforms: in a recent study, Meneses et al. [21] compared the different characteris-
tics of three open-source embedded solutions for the implementation of an augmented
musical instrument. These solutions were the Bela framework [22], Prynth [23], and a
custom sound processing unit. The authors presented a clear overview of the advan-
tages and drawbacks of each platform, resulting in each being found valid and apt
for different applications. Along the same lines, Vignati et al. [24] compared different
real-time architectures based on the Linux operating system, and found that the best
performances were achieved by the use of the Xenomai kernel.

The Xenomai-based real-time operating system Elk Audio OS [25] was designed
to streamline the development of digital hardware music devices such as SMIs, and
has proven to be valid for several of these projects (e.g., the Sensus Smart Guitar, the

1https://www.fishman.com/tripleplay/
2https://www.roland.com/it/products/gr-55/
3https://www.soundonsound.com/reviews/terratec-axon-ax50-usb
4https://line6.com/variax-modeling-guitars/
5https://www.roland.com/products/g-5/
6https://legacy.gibson.com/Products/Electric-Guitars/Firebird/Gibson-USA/Firebird-X/Specs.aspx
7https://www.youtube.com/watch?v=fqzEQnsSIoY
8https://www.hyvibeguitar.com/
9https://www.lavamusic.com/

5

https://www.fishman.com/tripleplay/
https://www.roland.com/it/products/gr-55/
https://www.soundonsound.com/reviews/terratec-axon-ax50-usb
https://line6.com/variax-modeling-guitars/
https://www.roland.com/products/g-5/
https://legacy.gibson.com/Products/Electric-Guitars/Firebird/Gibson-USA/Firebird-X/Specs.aspx
https://www.youtube.com/watch?v=fqzEQnsSIoY
 https://www.hyvibeguitar.com/
https://www.lavamusic.com/


SOURCE sampler [4], GuitarML’s Neural Pi10). Our previous work reported in [26]
successfully employed Elk Audio OS in the deployment of audio processing software
involving deep learning inference. Having found Elk Audio OS to provide several tools
that eased the development of real-time audio processing and recognition software for
embedded devices, it was selected for the current study.

2.3 Guitar Technique Recognition

Playing technique recognition is a research topic that has received considerable inter-
est in MIR throughout the years [27–29]. In the case of guitar, technique recognition
has been investigated in the offline context for tasks such as extended music annota-
tion [30], [31] and arpeggio identification [32]. In this case, technique recognition is
performed on whole performance recordings.

Research on guitar playing technique detection has evolved from basic analyses to
more advanced machine learning approaches. Early work by Traube et al. [33] and
Penttinen et al. [34] established fundamental methods for plucking point detection,
which significantly affects the timbral characteristics of guitar sounds. Subsequently,
researchers explored various algorithmic approaches with mixed success: Chen et al.
[35] achieved only moderate accuracy (74% F-score) with their two-stage algorithm for
detecting five guitar techniques in solos, while Abeßer et al. [36] demonstrated that
Gaussian Mixture Models outperformed other conventional machine learning classifiers
for bass guitar playing style detection. More recent work has focused on sparse coding
methods, with Su et al. initially achieving modest results (71.7% F1-score across seven
techniques) [37], before improving performance to 79.72% F-score [38]. However, these
approaches have generally been limited to offline analysis of pre-recorded monophonic
guitar segments.

Offline algorithms are often able to achieve high result quality due to the avail-
ability of the entire context, i.e. audio signal, before, during, and after each note in
the signal. However, offline recognition cannot be employed in real-time performance
scenarios as it would require the performance to be over (or parts of it) to produce its
results [39].

Differently from these, Reboursière et al. [40] represents one of the first approaches
introducing the concept of real-time guitar-technique classification for controlling or
triggering any external type of media or effects. The authors presented preliminary
results on the detection of seven guitar techniques. Separate signal processing and
feature extraction operations were used for each technique. The resulting set of custom
detectors showed a detection success rate of about 90% across the different techniques.
They also proposed an embedded hardware implementation, but not all the detection
algorithms were adapted for real-time usage. Some of the authors improved on the
performance of the system in [41], but the algorithms for each technique were not
combined successfully and the results were obtained with the offline implementations.
The different algorithms were reportedly grouped in a plugin with a later effort [42].

Some of the aforementioned studies approached guitar technique classification
using conventional machine-learning solutions in real-time contexts. In contrast, oth-
ers employed deep learning solutions for offline classification, and a few proposed

10https://github.com/GuitarML/NeuralPi

6

https://github.com/GuitarML/NeuralPi


embedded computing solutions. However, we found a lack of solutions that effectively
combine these ideas for real-time technique recognition on resource-constrained devices
such as embedded computers. Moreover, most of the works do not mention performer-
instrument group isolation between training and testing, which has deep implications
on performance metrics and generalization capabilities of a recognition system, and is
often adopted in other works outside of guitar playing technique recognition [43–45].

2.4 Percussive Guitar Technique Recognition

Approaches to real-time percussive hit classification and sound triggering have been
approached in many studies, which focused on different sources as “interfaces”, such
as drums (e.g., the Cajón [46]) or everyday objects and surfaces [47, 48]. A similar
approach was applied to the guitar by Lähdeoja [49], fitting the instrument with many
piezoelectric transducers and performing onset and timbre detection on a laptop.

More recently, Martelloni et al. [50] conducted an interview study focused on
the popular percussive fingerstyle for acoustic guitars. The style involves the use of
the body of the guitar itself as a percussive instrument to accompany a solo per-
formance. The study observed percussive fingerstyle guitarists in different conditions
and investigated possible guitar augmentations that could benefit their performance.
This resulted in a map of the locations of the most common percussive interactions.
Moreover, the authors identified common patterns in the needs of the players which
suggested that percussive fingerstyle performances can benefit from real-time classifi-
cation of the percussion area utilized, which can be used to trigger substitute sounds
or control the processing of the guitar signal.

The authors went ahead to implement an augmented guitar prototype [51] that was
paired with three piezoelectric transducers. The signal from the transducers was fed to
a timbre classification system with two output classes: one for kick-drum-like gestures
and one for all other percussive gestures. The classification output triggered different
sound samples depending on the predicted class. The authors further investigated the
detection of percussive techniques on the guitar in [52], fitting the instrument with
two more piezoelectric transducers (five in total, located at the main hit areas) and
exploring the hierarchical classification of both the hit area and hand part used.

The system designed by Martelloni et al. involves the modification of an acoustic
guitar with five transducers, which can greatly simplify the problem of percussive-
hit classification by allowing classifiers to rely on time and loudness cues at different
transducers to predict hit areas. This relies on multiple analog-to-digital converters
(ADCs) and a laptop computer that runs a multichannel hit classifier in real-time.
However, we seek a solution that is more cost-effective and minimally intrusive.

In the present study, we approach both percussive and pitched technique detection
from the sole audio signal coming from the transducers fitted into amplified steel-string
acoustic guitars. Moreover, we choose not to rely on a laptop or desktop computer
for two main reasons: (i) first and foremost, because the recognition pipeline is meant
to be part of an IoMusT device such as a smart guitar, and second (ii) because a
solution solely based on small and embeddable SBCs can easily be part of either the
instrument or an external device (e.g., a guitar effect pedal), making for an overall less

7



cumbersome setup (i.e., one vs multiple transducers, one vs multiple shielded audio
cables, one vs multiple preamplifiers and ADCs).

3 Methodology

This section describes the proposed playing technique approach and implemen-
tation, and is organized as follows: Section 3.1 provides information about the
hardware. Section 3.2 describes the software pipeline, including onset detection, fea-
ture extraction, and technique classification. Finally, in Section 3.3 we present relevant
considerations on latency and potential tradeoffs with accuracy.

3.1 Hardware

The classifiers trained for these studies were deployed on a Raspberry PI4 4 Gb SBC
running the Elk Audio OS [25]. The choice of this SBC is justified by the compact size
of the hardware and reasonable power consumption, along with the rather satisfactory
computational power of this most recent model. For practical prototyping reasons, the
Raspberry Pi was not inserted into the instrument but kept attached to the shoulder
strap. Power was provided to the board via a USB power bank. The input and output
audio signals were handled with the Elk-PI Hat development board for AD/DA con-
version. The same results were obtained with a more compact HifiBerry DAC+ ADC
Pro hat (see Figure 1).

3.2 System Architecture

In the proposed system, expressive guitar technique recognition is performed on a
per-note basis, and the classification is composed of three separate steps, i.e., onset
detection, feature extraction, and classification (See Figure 3).

Fig. 3 Playing technique recognition pipeline. Input audio is fed to both an onset detector and several
feature extractors. Upon detection of new onsets, the former triggers the latter, which computes
features on a short audio context and feeds them to the deep classifier.

Onset detection is tuned on guitar sounds and used to trigger feature extraction,
which is delayed to gather a sufficient amount of audio signal. Recent approaches in
offline MIR employ end-to-end networks that operate directly on the raw audio signal
and learn latent features. However, these are often rather computationally expensive
and can be inapplicable in real-time embedded approaches that try to limit compu-
tation requirements and latency [53]. On the contrary, timbral features such as Mel

8



Frequency Cepstral Coefficient (MFCC) can be extracted in real-time with a small
delay and amount of computational power. Extracted features are then fed to a Con-
volutional Neural Network (CNN) to predict a higher-level property such as guitar
technique starting from timbral features. Four CNNs were trained for Experiment 1,
as will later be explained in detail.

An added advantage of a multistep pipeline is that it can be split into the steps
that are required to run at the audio callback rate in the real-time thread (e.g., onset
detection and audio buffering) and those that can run on a separate thread, only when
an onset is detected (e.g., feature extraction and classification), see Figure 4.

Fig. 4 Recognition pipeline along with an example of execution. Upon onset detection, after a small
delay from the real onset, feature computation and classification are executed on a separate thread
and can take longer than a single audio processing callback. This is allowed as note events are less
frequent than the set audio callback rate for the project (64 samples at 48 kHz, resulting in 1.66 ms
between audio callbacks, while note onset intervals are limited to a minimum of 20 ms through the
detector’s parameters).

3.2.1 Onset detection

For onset detection, we used the Aubio library [54] implementation of the Modified
Kullback–Leibler (MKL) distance function without the default adaptive whiten-
ing [39], whose parameters were optimized for both accuracy and latency with an
evolutionary algorithm in [55]. The parameter tuning in [55] was performed with an
earlier version of the playing guitar technique dataset used here (i.e., the AG-PT-
set). On the current version of the main dataset, the optimized detector obtained an
accuracy of 90.98% and an F1-score of 95.28%. On the smaller extra test dataset, the
accuracy and F1-score of the onset detector were 95.72% and 97.81%, respectively.

9



The playing technique recognition pipeline here was run with an audio buffer size of 64
samples and a sample rate of 48 kHz for compatibility with the optimized parameter
assignation found in [55].

3.2.2 Feature extraction

For the feature extraction step, we used a set of timbral extractors from the TimbreID
Puredata library [56], which were converted to C++ classes and made compatible
with the Juce framework for audio plugins. The feature extractors are available as
open-source11. We selected many feature extractors that describe timbre (in terms
of spectral and temporal content), as it is the main sound property affected by the
use of the selected playing techniques across different pitches [41]. The extractors of
choice were MFCC, Bark Frequency Cepstral Coefficient (BFCC), Bark Spectrum,
Bark Spectral Brightness, Real Cepstrum, Peak Sample, Attack Time, and Zero Cross-
ing Rate. Full feature vectors were then subject to feature selection with ANOVA [57],
with the number of selected features being a parameter optimized through grid search.
For each note, features are extracted throughout a feature window interval. The fea-
ture window is composed of several overlapping sub-windows, each of which is 256
samples long and overlaps by 50% with the neighboring sub-windows12. The number of
sub-windows (#SubW ) is determined by the overall feature window length following
Equation (1).

#SubW =

⌈
n

m× or
+ or

⌉
=

⌈
n

256× 0.5
+ 0.5

⌉
for n = 704, 2112, 3456, 4800

(1)

Where n is the length of the feature window in samples, m is the length of the
overlapping sub-windows (i.e., 256), and or is the overlap rate (i.e., 50%).

For each overlapping sub-window, the aforementioned extractors produce a vector
of 271 feature values13. Feature vectors are collected for each subwindow and arranged
in a matrix of size (271×#SubW ).

The C++ feature extractors are included in both a recognition plugin that runs on
the embedded computer, and a feature extraction plugin. The latter was run in offline
mode in a Digital Audio Workstation (DAW) for faster-than-real-time extraction from
the dataset.

11https://github.com/CIMIL/cpp-timbreID
12The first sub-window is overlapped by 50% with the signal that comes before the beginning of the

feature window, while the last overlaps with zero padding.
13The feature vector comprises the following coefficients and individual features: MFCC (38 coeff.), BFCC

(50 coeff.), Bark Spectrum (50 coeff.), Bark Spectral Brightness (1), Cepstrum (129 coeff.), Peak sample
(1), Attack Time (1), Zero Crossing Rate (1). Total = 271 values

10

https://github.com/CIMIL/cpp-timbreID


3.2.3 Classification

The last step of the recognition pipeline consists of a CNN classifier, which is fed
two-dimensional feature matrices from the initial part of each note and is trained to
predict the playing technique used.

The general structure of the classifier includes a maximum of two convolutional
layers, interleaved by batch normalization and pooling layers, followed by a maximum
of two fully connected hidden layers, a fully connected output layer, and a final soft-
max activation. The following hyperparameters were then tuned through grid search:
number of convolutional layers, number of fully-connected layers, number of input fea-
tures for automatic selection, learning rate, batch size, training epochs, kernel size per
layer, stride per layer, number of filters per layer, layer activations, pooling layer type,
number of neurons per dense (i.e., fully-connected) layer, and dropout rate. Multiple
rounds of grid search were performed for each experiment condition, starting from a
coarse grid and progressively refining the search space. The code and data used to
train and test the classifiers are available on GitHub as well14. The base structure of
the CNN classifier is represented in Figure 5, and the parameter ranges for the grid
search can be found in Table 1, along with the parameter values found for the four
configurations of the first experiment.

Table 1 Grid search parameter ranges.

Hyperparameter Start End

Learning-rate 5× 10−5 1× 10−3

Batch-size 1 512
Training Epochs 50 1500
Features (per subwindow) 50 271
Num. of Conv layers 1 2
Conv. kernel sizes 3 5
Conv. strides 1 2
Conv. Num. filters 8 32
Pooling layer types [MaxPool,AvgPool]
Num. of Dense layers 0 4
Width of Dense layers 16 100
Dropout rate 0.2 0.8

The neural models used for each experiment were trained and tested using Keras
and TensorFlow.

3.2.4 Embedded Deployment

Each CNN was converted to the TensorFlow Lite format and deployed on the embed-
ded board. The entire recognition pipeline was developed in C++ and compiled as a
Virtual Studio Technology (VST) plugin to be run within Elk Audio OS through its
headless DAW Sushi15 [26]. The DAW was set to process audio at 48 kHz and with a

14https://github.com/CIMIL/ExpressiveGuitar-TechniqueClassifier
15https://github.com/elk-audio/sushi

11

https://github.com/CIMIL/ExpressiveGuitar-TechniqueClassifier
https://github.com/elk-audio/sushi


Fig. 5 General structure of the classification networks. First, a set number of 2D convolutional layers
process the input feature matrix, and they are interleaved with batch normalization and pooling
layers. Then, the data is flattened and passed through a set number of fully connected layers, which
are also interleaved with batch normalization, and dropout is used for further regularization. Finally,
the last layer applies the softmax function to the output. The numbers and types of hidden layers
are part of the hyperparameters (see Table 2).

buffer size of 64 samples, as it was found to grant a sufficiently low latency for onset
detection and audio processing to be performed alongside the recognition pipeline [55].
Onset detection and feature extraction are then performed in the audio thread, while
the more demanding classification through deep inference is performed on a separate
thread so as not to interfere with the audio callback. Inference is performed using the
TensorFlow Lite C++ library. Classification results are then reported in a non-locking
fashion to the real-time audio thread, where they can be used for real-time synthesis
or sample triggering that is influenced by the prediction. The code for the recognition
VST is made available on GitHub16.

As a proof of concept, the classification result was used to synthesize a simple
sine tone with a different pitch for each technique. Additionally, the results were sent
via OSC messages over Wi-Fi to a computer with a simple visual graphics program
developed in Processing, so that the use of different techniques changed the colors of
projected visuals. Alternatively, a computer was set up with a DMX USB interface,
OSC-enabled software, and connected to two moving-head lights and a smoke machine
to trigger scenes or change to different rotation angles and colors depending on the
playing technique recognized (see Figure 2). This prototype of IoMusT environment
serves as a proof-of-concept and will be further developed and analyzed in future works.

3.3 Latency

The target “repurposing” application of a real-time playing technique recognition sys-
tem, i.e., the way that the classification results are used, determines the maximum
tolerable latency for the user. In turn, this affects how long the system can analyze the
audio signal from the onset of a note before having to produce a classification on the
currently available context. In a sound-to-sound application, i.e., where the classifica-
tion made on the incoming audio controls sound generation or processing, latencies as
little as 10 ms can be the maximum tolerable delay between action and sound for play-
ers [58]. However, there are application scenarios where recognition results are used

16https://github.com/CIMIL/cpp-timbreID

12

https://github.com/CIMIL/cpp-timbreID


for less time-critical control parameters of a sound synthesis engine, while note trig-
gering is performed through quicker pitch trackers and envelope followers [14]. In this
case, the latency of the recognition system can be increased to allow for more accurate
classification results without affecting the perceptual quality of the instrument. Other
applications can include sound-to-video systems, where the use of different playing
techniques can trigger or affect live visuals in conjunction with continuous measures
such as signal amplitude or pitch. In such applications, video artists might desire a sys-
tem with a latency that matches the frame rate of the video output, which is typically
30 or 60 frames per second (i.e., 33 or 16 ms). However, this would be a require-
ment only when using fast-paced video animations or effects. For more relaxed musical
styles, musicians and visual artists may steer towards slowly evolving visuals, in which
case they may be willing to trade off some latency for better recognition accuracy. This
can also apply to applications that control stage equipment over the network, such as
lighting, smoke machines, or other stage effects [7]. These requirements indicate that
the end-users or the developers of these repurposing applications could benefit from
real-time recognition systems that offer a flexible choice of the tradeoff between how
accurate and how reactive the system is. In light of this, Experiment 1 involves the
analysis of different accuracy-latency tradeoffs with the proposed recognition system.

To measure the onset-to-results latency for the proposed system, test data record-
ings were played on a computer and fed to the board through the output of a USB
audio interface (Focusrite Scarlett 2i2). At the same time, the stereo output from the
board was recorded through two inputs of the audio interface. The left channel con-
tained a passed-through version of the guitar signal fed to the classifier, while the right
contained a reference “spike” produced by the classifier along with its prediction for
each note. Note onsets in the output recordings were then labeled manually with the
Audacity17 software. The total software latency of the system was measured as the
time interval between each labeled note onset in the left channel and the relative spike
in the right channel. The measurement excluded any hardware or buffering latencies
as they vary depending on the DAC and ADC used and can be easily found in the
relative datasheets (i.e., the hardware used resulted in a latency of 3.9 ms at a sample
rate of 48 kHz and 64 samples per audio buffer). Different hardware of choice yields
different input/output latency that can be summed to the software latency to obtain
an end-to-end measure.

Latency was further broken down into its main components, namely the onset
detection latency (TOD), the feature-window alignment delay (TFWA) introduced
after onset detection to properly delay feature computation, the feature extraction
or computation latency (TFE) and the classification latency (TDNN). A graphical
representation of the time instants and corresponding intervals is shown in Figure 6.

17https://www.audacityteam.org/

13

https://www.audacityteam.org/


TOD TFWA TFE TDNN

TTOT

Time Intervals:
- TTOT    : Total classification time
- TOD     : Onset detection latency
- TFWA   : Feature-window alignment delay
- TFE      : Feature Extraction time
               (computation)
- TDNN   : Time for Classification of
                features with Neural Network

Time Instants:
-      Onset
-      Detection of the onset
-      Beginning of feature extraction
-      Beginning of Classification
-      End of classification

A B

Feature Analysis Window

C D E

A
B
C
D
E

Fig. 6 Representation of the time intervals that compose the total latency of the system. The total
onset-to-results latency corresponds to the sum of the onset detection latency, the feature-window
alignment delay, the feature computation latency, and finally the classifier inference time.

4 Evaluation

4.1 Data

The dataset used for the experiments is the Acoustic Guitar Playing Technique dataset
(AG-PT-set) that we presented in [59]. AG-PT-set is composed of over 10 hours of
recordings with 32,592 individual notes captured with the internal pickups18 of 6
electro-acoustic guitars. These notes are played with 8 distinct playing techniques
(including percussive techniques) and three different dynamics (i.e., piano, mezzo forte,
forte) by 7 experienced guitarists. The techniques considered for this study are the
following:

1. “Kick” technique: hit on the lower right part of the guitar top;
2. “Snare-1” technique: hit on the lower side of the guitar body;
3. “Tom” technique: hit on the upper guitar body near the top of the fretboard end;
4. “Snare-2” technique: hit on the muted strings over the fretboard;
5. “Natural Harmonics”: plucking the strings while lightly touching the string with

the fretting finger, therefore forcing a node in the displacement of the string and
letting only some harmonic overtones ring;

6. “Palm Mute”: partially muting a string with the palm of the picking hand;
7. “Pick Near Bridge”: plucking a string near the saddle (i.e., bridge);

18Piezoelectric plus internal condenser microphone for 5 out of 6 guitars, and solely piezoelectric for the
remaining.

14



8. “Pick Over the Soundhole”: plucking a string over the soundhole.

Except for “Pick Near Bridge”, all pitched sounds are produced by plucking strings
over the soundhole. A more detailed description of the techniques and how the dataset
was recorded and labeled can be found in [59].

Additionally, for Experiment 3 (see Section 4.4), we recorded a small additional
test dataset. This extra-test dataset is composed of 362 notes recorded by the pair
Player-A/Guitar#1 (which is already present in the main dataset), and 380 notes
recorded by the new pair Player-B/Guitar#1, where guitar Guitar#1 is the same as
in the main dataset, but Player-B is a different guitarist playing the same guitar. Both
guitarists were provided with the same expressive instructions. The extra-test dataset
is used to measure differences in the recognition accuracy between the two players on
the same guitar, which could suggest a non-negligible effect performer individuality
on the recognition system. Performer individuality has been defined as idiosyncratic
patterns of performance actions that can result in different timbral nuances among
different performers [12]. In the case of guitar, performance actions that can result in
different timbral nuances can be, for example, the amount of force applied in string
muting, hand positioning, or pick positioning.

4.2 Experiment 1: Recognition accuracy under different
latency constraints

Following the considerations on latency discussed in the previous section, we devised
Experiment 1 to evaluate the accuracy achievable under different latency constraints.
For this, we optimized and trained four classifiers with respectively four target latencies
of 15, 45, 75, and 100 ms. In previous works, we observed how 15 ms is a reason-
ably small minimum latency that can provide adequate accuracy results with our
approaches and data [59], while 100 ms was a reasonably large delay that we consider
to be greater than the maximum tolerable latency for most musical tasks, even under
the most relaxed constraints. The target latencies of 45 and 75 ms were chosen by
equally splitting the range between the extremes and rounding. For each condition,
the main effect of a different target latency is on the length of the feature extraction
window. The longer the window, the more information is available to the classifier, but
this also increases the latency. In this case, for the four conditions, the window length
was set to 704, 2112, 3456, and 4800 samples respectively, with a sample rate of 48
kHz. Each value is an integer multiple of the audio block size used (i.e., 64 samples).

With the windowing procedure described in Section 3.2, the four experiment set-
tings correspond to extracted feature matrices of sizes (271× 6), (271× 17), (271× 28)
and (271× 38) for each note respectively.

For each condition, the classifier was optimized through grid search resulting in
different CNN architectures. The best-performing model for each condition is shown
in Table 2. Additionally, Figure 5 shows the model structure. The accuracy was evalu-
ated through a Minus-1-PI method (or leave-one-Performer/Instrument-pair-out, see
Section 4.3), where the data was split into 7 folds corresponding to data from the 7
player/instrument pairs in the dataset. For each fold, the model was trained on the

15



other 6 folds and tested on the selected data, so that the test player/instrument pair
was never used for training. The resulting metrics are averaged over all folds.

Table 2 Optimal values found through grid-search for the hyperparameters of each classifier
configuration.

Feature Window Size

Hyperparameter 704 2112 3456 4800

Learning-rate 8.0e-05 1.0e-04 1.0e-05 1.0e-04
Batch-size 64 64 128 128
Training Epochs 500 600 600 300
Features (per subwindow) 271 2001 2001 2001

Feature matrix shape2 [271×6] [200×17] [200×28] [200×38]
Num. of Conv layers 2 1 1 1
Conv. kernel sizes 3x3,3x3 5x5 5x5 5x5
Conv. strides 1,1 2 2 2
Conv. Num. filters 4,4 32 64 32
Conv. Activations relu,relu relu relu relu
Pooling layer types Max,Max Avg Avg Max
Num. of Dense layers 2 0 0 0
Width of Dense layers 32 16 16 16
Dropout rate 0.5 0.5 0.5 0.5

Model weights 10,404 52,168 181,128 116,168

1For the configurations 2112, 3456, and 4800, the best grid search results were obtained with feature
selection with ANOVA [57] and 200 features per subwindow.
2The number of subwindows follows Equation (1).

Once the best model for each configuration was found, these were converted to
the TensorFlow Lite format and deployed on the embedded board. The latency of the
whole pipeline was measured by feeding guitar recordings to the input of the system
while recording the output of the board. The output is composed of a copy of the
clean input signal, and a reference signal, which allowed us to accurately measure the
total latency. Furthermore, software probes that employed a steady clock allowed us
to measure the separate latency components mentioned in Section 3.3

4.3 Experiment 2: Generalization performance and the
performer-instrument effect

An ideal instrument-playing technique classifier with good generalizability should offer
high recognition accuracy independently of different instrument characteristics, record-
ing conditions, and different player’s playing styles [43]. In data-based approaches to a
rather complex task such as real-time technique recognition from few-millisecond-long
analysis windows, generalizability can come down to the amount and diversity of the
available data, as well as the fitting behavior of the approach.

Experiment 2 focuses on the generalization performance of the system. For this,
we started from one of the configurations of Experiment 1 (i.e., the lowest latency,
704 samples configuration) and trained and tested the classifier starting from a single

16



performer/instrument pair and progressively adding the remaining pairs one at a time.
This was done to assess whether the amount of data available to us is a limiting factor
for the performance of the system and to roughly estimate the amount of data required
to achieve a certain level of performance.

Moreover, since preliminary results with stratified 5-fold cross-validation displayed
potentially over-optimistic results, we set to verify whether the current task is subject
to confounding factors [9] akin to the artist and album effects [10, 11]. Album and artist
effects refer to the artificial inflation of classification performances that can be caused
by the presence of the same artists or albums in both training and testing record-
ings. In particular, approaches that fit to irrelevant artist or album characteristics
(e.g., mastering chain or a specific studio reverb) can obtain extremely over-optimistic
results with improper evaluation, while failing to generalize. In the case of the cur-
rent task, the performer-instrument pairs in the dataset can be identified as natural
data groups (similar to the artist for genre classification) and can potentially repre-
sent a confounding factor if not properly separated. We refer to the potential effect
as performer-instrument effect and set out to assess whether it has an impact for the
current task.

To do this, we separated natural groups in the data, avoiding performer-instrument
overlap between the training and test set. For this, we used a Minus-1-PI method,
adapted from Livshin’s Minus-1-DB method [43]. With Minus-1-PI method (Minus
one Player/Instrument pair), the data is split into 7 folds corresponding to the 7 play-
er/guitar pairs in the dataset. In this sense, Minus-1-PI evaluation is a special case
of Group K-Fold cross-validation, where each fold contains exactly one performer/in-
strument pair and is therefore akin to a leave-one-out strategy. This way, the model
is not only tested on data that was not seen during the training, but rather data that
was played by a different player/guitar pair than those in the training set. Minus-
1-PI results were compared to the more common stratified 5-fold cross-validation
measurement. For this, the sci-kit learn StratifiedKFold utility was used to create 5
folds where the percentage of samples from each class was preserved from the original
dataset.

4.4 Experiment 3: Specialization performance and performer
individuality

Once we assessed the generalization capabilities of the system, we set to measure
the performance of a specific single instrument. It is not unreasonable in fact, for
an embedded recognition system for a SMI to target a specific instrument rather
than focusing on performance across different instruments. In this context, we set to
verify whether adding data from different performer/instrument pairs would affect
recognition accuracy. This can be a useful result because, in the case that the data
from a single instrument is limited, it can inform whether it is possible to integrate
data from different conditions, or if it is necessary to collect more data. To do this,
we recorded extra data (see Section 4.1) for Guitar#1 and a player that we will refer
to as Player-A from now on. The pair Player-A/Guitar#1 was already present in the
main dataset. The final model for the chosen configuration (i.e., 704 samples feature

17



window) was first trained on the main dataset recordings for only the pair Player-
A/Guitar#1, and tested on the extra data for the same pair. Then, the model was
trained and tested six more times by progressively adding the six remaining pairs to
the training set only.

Additionally, we set to evaluate the performance of these trained models on the
same instrument (i.e., Guitar#1) but with a different player (i.e., Player-B) that was
not present in any recording of the main dataset. Although limited in its extent, this
experiment can help to understand whether the performance of a real-time playing
guitar technique recognition system can be affected by a certain degree of performer
individuality. Performer individuality describes subtle differences in the way different
performers play the instrument, resulting in idiosyncratic timbral nuances [12]. Sim-
ilar performer-based features have been studied in the past and even used for player
identification [60] While the existence of a degree of performer individuality and its
repercussions on the instrument’s sound are undoubted, it is yet to be verified whether
the differences in the way a musician intends and plays certain techniques can affect
the very first milliseconds of played notes. Moreover, it is yet to be verified whether
the extent of these differences can affect the performance of a timbre-based recogni-
tion system. This can help inform a future in-depth study on the matter that could,
in turn, drive relevant choices in how to integrate new recordings into our dataset, or
the creation of new datasets that are specifically targeted to a single instrument.

5 Results And Discussion

5.1 Experiment 1: Latency and accuracy

The results of Experiment 1 are shown in Figures 7 and 8. The first plot shows the
recognition accuracy across the eight techniques and the latency of the different con-
figurations of the system, while the second shows the F1-score for each technique.
Accuracy and F1-score values reported are averaged over 7-fold with the Minus-1-PI
approach (see Section 4.3). The total latency is broken down into its components, as
described in Figure 6.

The accuracy results show a clear increasing trend with the increase of the feature
window (therefore latency). However, the greatest increase in accuracy is observed
between the 704 and 2112 window configurations, with marginal improvements with
longer windows. Figure 8 offers better insight into why this is the case. In partic-
ular, we see how the performance for all techniques increases between the first two
configurations, indicating that 704 samples at 48 kHz may be a very limited context
to capture most of the playing techniques, but the most sizable performance jumps
are seen with pitched techniques and natural harmonics in particular. This can be
attributed to the more complex timbral nature of pitched techniques, with common
spectral cues being spread across a wide range of pitches in the data.

Moreover, natural harmonics are played with a fast action that can be, at times,
detected as two onsets, making it difficult to align the feature window. While the first
action is always detected as the main onset, and the second suppressed by a debounc-
ing mechanism, the more technique-related timbre content happens mainly after the
second onset. This can explain how longer windows, which include this additional

18



context, improve the performance with natural harmonics. A more in-depth analysis
of the natural harmonic false negative notes shows that these are generally confused
with other pitched techniques, and to a lesser degree with the Snare-1 technique. An
example of the occasional double onset is displayed in Figure 9.

Fig. 7 Recognition accuracy and latency of the four configurations for Experiment 1. For each
configuration, a different feature extraction window length is used, impacting both the accuracy
and latency of the system. The total latency is reported along with a breakdown of its different
components, as described in Figure 6. Error bars for the accuracy represent the standard error
across evaluation folds, while for the total latency, they represent the standard error across repeated
measurements. Detailed measures of the latency components can be found in Table 3

With longer feature windows, the performance of pitched techniques tends to
increase less and stagnates in some cases, but the performance of percussive tech-
niques tends to decrease. This can be because percussive techniques generate sounds
with shorter decay and more information around the early attack phase of the signal.
While adding more context should not affect the performance of percussive techniques,
trying to also classify pitched sounds may cause the network to favor focusing on the
whole feature window instead of the sole attack.

19



In terms of the latency results measured on the embedded implementation, the
impact of the classifier inference (TDNN, Figure 6) becomes less relevant with greater
feature windows. Moreover, most of the latency in the configurations with 2112, 3456,
and 4800 is constituted by the feature-window alignment delay (TFWA), which is used
to align the feature windows with the onset and depends on both its size and TOD.
The onset detection delay (TOD) remains the same as the configuration of the detector
was not changed, but the composition of the total latency shows how we could have
different onset detector settings with more latency and greater accuracy and reduce
TFWA without affecting the total latency. Finally, the time required by the actual
computation of the feature matrices (TFE) is negligible, as most of the computations
are simple and performed when each audio block of 64 samples is added to the buffer.

Table 3 Detailed latency breakdown of all the recognition configurations with
relative standard deviations.

Model TOD (ms) TFWA (ms) TFE (ms) TDNN (ms) TTOT (ms)

s704 4.8 ± 0.7 6.6 ± 0.0 0.1 ± 0.0 2.6 ± 0.0 14.2 ± 0.7
s2112 4.8 ± 0.7 35.9 ± 0.7 0.2 ± 0.0 2.7 ± 0.0 43.5 ± 1.5
s3456 4.8 ± 0.7 63.6 ± 4.2 0.2 ± 0.0 4.1 ± 0.2 72.7 ± 5.0
s4800 4.8 ± 0.7 91.5 ± 4.6 0.2 ± 0.0 4.0 ± 0.1 100.6 ± 5.4

5.2 Experiment 2: Generalization performance and the
performer-instrument effect

The results of Experiment 2 are shown in Figure 10 and Figure 11. The plots show
the recognition accuracy of the 704 sample feature window configuration, trained and
tested on a progressively larger dataset, where performer/instrument pairs are added
one at a time. Figure 11 represent the average results obtained with regular stratified 5-
fold cross-validation, where all the data from the selected performer/instrument pairs
is mixed and each sample is eligible to become part of any of the 5-folds. Conversely,
Figure 10 represents the results of Minus-1-PI evaluation, where data from each per-
former/instrument pair constitute a separate fold. As a consequence, the rightmost
bar of Figure 10 corresponds to the first bar of Figure 7, while the remaining bars
represent the performance of the model trained on fewer data. The takeaways from
the results of Experiment 2 are the following:

1. Generalization performance increases with the addition of data from more guitars
and players, but the current size of the dataset is limiting;

2. The performance averaged over stratified 5-fold cross-validation is over-optimistic
and misleading as it decreases with the increase of the real generalization
capabilities of the classifier.

20



Fig. 8 F1-score for each playing technique and each configuration of Experiment 1. Dotted lines
represent percussive techniques, while solid lines represent pitched techniques (see Section 4.1).

Takeaway 1 highlights an expected increase in the performance of the model, but
it indicates that the task of generalization over multiple guitars and players is com-
plex, and having only seven performer/instrument pairs in the dataset is limiting the
potential recognition performance. Furthermore, the unstable increase in performance
might suggest that, for this task, a satisfactory number of performer/instrument pairs
would be considerably higher than seven. These results suggest how future efforts
should either be directed at increasing the size of the dataset, or at investigating the
possibilities of specializing the trained models on a single instrument with techniques
such as layer-freezing and fine-tuning, or domain adaptation. Using a small and pos-
sibly unlabeled set recorded on the fly would be a feasible and practical way to adapt
the pre-trained model in a real-world scenario.

Takeaway 2 highlights how using a cross-validation procedure that is not grouped
by performer/instrument pair can be over-optimistic and misleading for the current
task, as it shows a decreasing trend in accuracy with the increase of actual gener-
alization capabilities of the model. Moreover, the accuracy from an incorrectly split
evaluation is the highest with a single guitar and player pair between the train and
test sets, where the test can benefit the most from unwanted overfitting to the specific
characteristics of the single pair in the dataset.

This becomes especially detrimental to the real generalization performance of
the classifier when recognition accuracy measured with non-grouped cross-validation
is used to drive hyperparameter optimization and model selection. In this case, we
observed the insurgence of a performer-instrument effect that fosters the overfitting of

21



Fig. 9 Example of a natural harmonic sound where two onsets that are 4 ms apart can be distin-
guished. The first can be attributed to the picking gesture, while the second is followed by a harmonic
behavior.

Fig. 10 Generalization results comparing accu-
racy with the increase of the number of guitars
in the dataset, using the Minus-1-PI approach
for cross-validation.

Fig. 11 Generalization results measured with
a common but incorrect validation procedure
(Stratified 5-fold cross-validation).

the model to the specific characteristics of the known guitars and players rather than
learning the general properties of the playing techniques.

5.3 Experiment 3: Specialization performance and performer
individuality

The results of Experiment 3 are illustrated in Figure 12. The plot shows the recog-
nition accuracy of the 704 sample feature window configuration, trained starting
from a specific performer/instrument pair (i.e., Player-A/Guitar#1) and tested on
extra data from the same instrument but two distinct players (i.e., Player-A and
Player-B). Furthermore, the classifier is progressively trained on data from the other

22



Fig. 12 Test accuracy with one guitar (1), a known player (A), and a new player (B).

performer/instrument pairs in the main dataset. While Player-A is always in the train-
ing set for each model, Player-B did not record any data for the main dataset. The
main results of Experiment 3 are the following:

A The model trained only on data from Player-A/Guitar#1 performs considerably
better in extra data from the same pair than on new performer/instrument pairs
(see Experiment 1 results in Section 5.1);

B Adding data from other performer/instrument pairs to the training set is detri-
mental to the performance of the model on the specific Player-A/Guitar#1 pair.
This indicates that specific data is preferable over data quantity;

C Most importantly, the model trained on Player-A/Guitar#1 performs consis-
tently worse when a new (unknown) Player-B plays the same instrument. This
suggests that performer individuality can be a relevant factor for the performance
of a playing guitar technique classifier.

23



Takeaway A confirms that the classifier retains good generalizability from record-
ing factors, as the extra test set was recorded months later, with a different pick,
cables, and slightly different guitar settings (e.g., neck bow, volume setting). Addition-
ally, this can highlight how the generalization metrics of Experiment 1 are not relevant
when designing a classifier for a specific instrument and player. Takeaway B instead
highlights how adding training data from new performer/instrument pairs cannot help
the specialization performance for a target pair. Takeaway C suggests that the ways
that two musicians play the same techniques differently (i.e., performer individuality)
can significantly affect the recognition performance of a real-time playing guitar tech-
nique classifier, even with the very short context considered. While the limited extra
data used for Experiment 3 does not allow for a deeper analysis of performer individ-
uality on the task, the consistency of the results suggests that this factor is relevant.
While it is easy to find reasons why different guitars can trick the classifier, further
study will need to be devoted to understanding why performer individuality exists for
guitar and has such an impact.

6 Conclusions

In this paper, we presented a flexible-latency embedded real-time playing guitar tech-
nique recognition pipeline for a smart acoustic guitar. The system was designed for
low-latency recognition resource-constrained embedded devices, and it was imple-
mented and successfully deployed to a Raspberry Pi 4 with the Elk Audio OS. As a
proof-of-concept, we integrated the smart guitar into a networked environment, where
classification results were used to control live visuals and stage equipment.

Moreover, we investigated the impact of the task requirements and data char-
acteristics on recognition performance. We found that relaxing latency constraints,
especially between 15 and 45 ms, can benefit the recognition accuracy for pitched
and percussive techniques, while the performance for percussive techniques is mostly
unaffected and even slightly degraded with larger feature windows. Additionally, we
observed a tendency for models to fit specific guitar and player characteristics, limiting
their ability to learn the broader properties of playing techniques and the generaliza-
tion performance on new instruments and players. We successfully addressed the issue
by employing a Minus-1-PI evaluation method to ensure that guitar and player pairs
remain separate during training and testing, which provides a reliable accuracy metric
to drive hyperparameter optimization. On the contrary, the accuracy metrics obtained
with simple k-fold cross-validation were revealed to be misleading as they decreased
with the increase in real generalization performance. Finally, we focused on a single
instrument and found how this can expectedly lead to better performance, but also
how performer individuality manifested in the different touch, or style, of different
guitarists can affect the recognition performance.

We acknowledge important limitations in our study that provide clear directions
for future research. First, the additional dataset used to investigate performer indi-
viduality was constrained in size, which potentially limits the comprehensiveness of
our findings on individual playing styles. The research primarily focused on attack-
based techniques in monophonic signals, representing a narrow subset of guitar-playing

24



techniques and signal complexity. This excludes playing techniques such as vibrato or
hammer-on. Polyphony will be addressed with the use of a hexaphonic pickup, and
we will investigate embedded real-time recognition of a broader range of guitar tech-
niques by integrating additional features across multiple time scales. Future research
will also explore different classification structures, such as parallel models to separate
percussive and pitched techniques and improve performances. Ultimately, we aim to
conduct a more thorough investigation of the performer individuality through the inte-
gration of new data in our expressive guitar technique dataset, and in-depth analysis
of signal differences.

7 List Of Abbreviations

ADC Analog-To-Digital Converter.
AMI Augmented Musical Instrument.
BFCC Bark Frequency Cepstral Coefficient.
CNN Convolutional Neural Network.
DAW Digital Audio Workstation.
DMI Digital Musical Instrument.
IoMusT Internet Of Musical Things.
IoT Internet Of Things.
MFCC Mel Frequency Cepstral Coefficient.
MIR Music Information Retrieval.
NIME New Interfaces For Musical Expression.
OSC Open Sound Control.
RT-MIR Real-Time Music Information Retrieval.
SBC Single-Board Computer.
SMI Smart Musical Instrument.
VST Virtual Studio Technology.

8 Declarations

8.1 Availability of data and materials

The datasets used to train the models in this paper are available at https://doi.org/
10.5281/zenodo.10159492 and described in [59]. The code used to train the models is
available at https://github.com/CIMIL/ExpressiveGuitar-TechniqueClassifier.

8.2 Competing interests

LT is a co-founder of Elk Audio AB and a guest editor for the current special issue:
Signal Processing for the Internet of Sounds.

8.3 Funding

Not Applicable.

25

https://doi.org/10.5281/zenodo.10159492
https://doi.org/10.5281/zenodo.10159492
https://github.com/CIMIL/ExpressiveGuitar-TechniqueClassifier


8.4 Authors’ contributions

DS: conception, code implementation, network training, main writing, and research
oversee. LT: conception, research oversee, manuscript contribution, and revision. All
authors read and approved the final manuscript.

8.5 Acknowledgements

Not Applicable

References

[1] Atzori, L., Iera, A., Morabito, G.: The Internet of Things: A survey. Computer
Networks 54(15), 2787–2805 (2010) https://doi.org/10.1016/j.comnet.2010.05.
010

[2] Widmer, G., Rocchesso, D., Välimäki, V., Erkut, C., Gouyon, F., Pressnitzer,
D., Penttinen, H., Polotti, P., Volpe, G.: Sound and music computing: Research
trends and some key issues. Journal of New Music Research 36(3), 169–184 (2007)
https://doi.org/10.1080/09298210701859222

[3] Turchet, L., Fischione, C., Essl, G., Keller, D., Barthet, M.: Internet of musical
things: Vision and challenges. IEEE Access 6, 61994–62017 (2018) https://doi.
org/10.1109/ACCESS.2018.2872625

[4] Font, F.: SOURCE: a Freesound Community Music Sampler. In: Proc. 16th Int.
Audio Mostly Conference, pp. 182–187 (2021). https://doi.org/10.1145/3478384.
3478388

[5] Migicovsky, A., Scheinerman, J., Essl, G.: MoveOSC - Smart Watches in Mobile
Music Performance. In: Proc. Int. Computer Music Conference (ICMC), pp. 692–
696 (2014)

[6] Thorn, S.: Telematic wearable music: Remote ensembles and inclusive embodied
education. In: Proc. 16th Int. Audio Mostly Conference, pp. 188–195 (2021).
https://doi.org/10.1145/3478384.3478386

[7] Turchet, L.: Smart musical instruments: Vision, design principles, and future
directions. IEEE Access 7, 8944–8963 (2019) https://doi.org/10.1109/ACCESS.
2018.2876891

[8] Romani, M., Giudici, G.A., Stefani, D., Zanoni, D., Boem, A., Turchet, L.: BCH-
Jam: a Brain-Computer Music Interface for Live Music Performance in Shared
Mixed Reality Environments. In: Proc. 5th Int. Symposium on the Internet of
Sounds (IS2), pp. 1–9 (2024). https://doi.org/10.1109/IS262782.2024.10704087

[9] Rodŕıguez-Algarra, F., Sturm, B.L., Dixon, S.: Characterising confounding effects
in music classification experiments through interventions. Transactions of the

26

https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1016/j.comnet.2010.05.010
https://doi.org/10.1080/09298210701859222
https://doi.org/10.1109/ACCESS.2018.2872625
https://doi.org/10.1109/ACCESS.2018.2872625
https://doi.org/10.1145/3478384.3478388
https://doi.org/10.1145/3478384.3478388
https://doi.org/10.1145/3478384.3478386
https://doi.org/10.1109/ACCESS.2018.2876891
https://doi.org/10.1109/ACCESS.2018.2876891
https://doi.org/10.1109/IS262782.2024.10704087


International Society for Music Information Retrieval (2019) https://doi.org/10.
5334/tismir.24

[10] Pampalk, E., Flexer, A., Widmer, G., et al.: Improvements of audio-based music
similarity and genre classificaton. In: Proc. 6th Int. Society for Music Information
Retrieval Conference (ISMIR), vol. 5, pp. 634–637 (2005). London, UK

[11] Flexer, A., Schnitzer, D.: Effects of album and artist filters in audio similarity
computed for very large music databases. Computer Music Journal 34(3), 20–28
(2010)

[12] Bernays, M., Traube, C.: Investigating pianists’ individuality in the performance
of five timbral nuances through patterns of articulation, touch, dynamics, and
pedaling. Frontiers in Psychology 5 (2014) https://doi.org/10.3389/fpsyg.2014.
00157

[13] Jensenius, A.R., Lyons, M.J.: A NIME Reader: Fifteen Years of New Interfaces for
Musical Expression. Current Research in Systematic Musicology, vol. 3. Springer,
Cham, Switzerland (2017). https://doi.org/10.1007/978-3-319-47214-0

[14] Puckette, M.: Patch for guitar. In: Pure Data Convention, Montreal, pp. 1–5
(2007)

[15] Bouillot, N., Wozniewski, M., Settel, Z., Cooperstock, J.R.: A Mobile Wireless
Augmented Guitar. In: Proc. Int. Conf. on New Interfaces for Musical Expres-
sion (NIME), Genoa, Italy, pp. 189–192 (2008). https://doi.org/10.5281/zenodo.
1179499

[16] Reboursière, L., Frisson, C., Lähdeoja, O., Mills, J.A., Picard-Limpens, C., Todo-
roff, T.: Multimodal Guitar : A Toolbox For Augmented Guitar Performances. In:
Proc. Conf. on New Interfaces for Musical Expression (NIME), Sydney, Australia,
pp. 415–418 (2010). https://doi.org/10.5281/zenodo.1177881

[17] Angulo, I., Giraldo, S., Ramirez, R.: Hexaphonic guitar transcription and
visualization. In: Proc. Int. Conf. on Technologies for Music Notation and
Representation (TENOR), pp. 187–192 (2016). https://doi.org/10.5281/zenodo.
1289596

[18] Lähdeoja, O.: An augmented guitar with active acoustics. In: Proc. 12th Int.
Conf. in Sound and Music Computing, SMC 2015, pp. 85–89 (2015). https://doi.
org/10.5281/zenodo.851049

[19] Meneses, E.A., Freire, S., Wanderley, M.M.: GuitarAMI and GuiaRT: two inde-
pendent yet complementary augmented nylon guitar projects. In: Proc. Int. Conf.
on New Interfaces for Musical Expression (NIME), pp. 222–227 (2018)

[20] Stefani, D.: Embedded Real-time Deep Learning for a Smart Guitar: A Case

27

https://doi.org/10.5334/tismir.24
https://doi.org/10.5334/tismir.24
https://doi.org/10.3389/fpsyg.2014.00157
https://doi.org/10.3389/fpsyg.2014.00157
https://doi.org/10.1007/978-3-319-47214-0
https://doi.org/10.5281/zenodo.1179499
https://doi.org/10.5281/zenodo.1179499
https://doi.org/10.5281/zenodo.1177881
https://doi.org/10.5281/zenodo.1289596
https://doi.org/10.5281/zenodo.1289596
https://doi.org/10.5281/zenodo.851049
https://doi.org/10.5281/zenodo.851049


Study on Expressive Guitar Technique Recognition. PhD thesis, University of
Trento (2024). https://doi.org/10.15168/11572 399995

[21] Meneses, E., Wang, J., Freire, S., Wanderley, M.: A comparison of open-source
linux frameworks for an augmented musical instrument implementation. In: Proc.
Int. Conf. on New Interfaces for Musical Expression (NIME), pp. 222–227 (2019).
https://doi.org/10.5281/zenodo.3672934

[22] McPherson, A., Zappi, V.: An environment for submillisecond-latency audio and
sensor processing on beaglebone black. In: Proc. Audio Engineering Society 138th
Convention (2015)

[23] Franco, I., Wanderley, M.M.: Prynth: A framework for self-contained digital
music instruments. In: In Proc. 12th Int. Symposium on Computer Music
Multidisciplinary Research (CMMR), pp. 357–370 (2016)

[24] Vignati, L., Zambon, S., Turchet, L.: A comparison of real-time Linux-based archi-
tectures for embedded musical applications. Journal of the Audio Engineering
Society 70(1/2), 83–93 (2022)

[25] Turchet, L., Fischione, C.: Elk audio os: an open source operating system for the
internet of musical things. ACM Transactions on the Internet of Things 2(2),
1–18 (2021)

[26] Stefani, D., Turchet, L.: Real-time embedded deep learning on elk audio os. In:
4th International Symposium on the Internet of Sounds (IS2), pp. 21–30 (2023).
https://doi.org/10.1109/IEEECONF59510.2023.10335204

[27] Lostanlen, V., Andén, J., Lagrange, M.: Extended playing techniques: the next
milestone in musical instrument recognition. In: Proc. 5th Int. Conf. on Digital
Libraries for Musicology, pp. 1–10 (2018)

[28] Wang, C., Benetos, E., Lostanlen, V., Chew, E.: Adaptive scattering transforms
for playing technique recognition. IEEE/ACM Transactions on Audio, Speech,
and Language Processing 30, 1407–1421 (2022) https://doi.org/10.1109/TASLP.
2022.3156785

[29] Wang, C., Lostanlen, V., Benetos, E., Chew, E.: Playing technique recognition by
joint time–frequency scattering. In: Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing (ICASSP), pp. 881–885 (2020). https://doi.org/10.1109/
ICASSP40776.2020.9053474 . IEEE

[30] Özaslan, T.H., Guaus, E., Palacios, E., Arcos, J.L.: Attack based articula-
tion analysis of nylon string guitar. In: Proc. 7th International Symposium on
Computer Music Modeling and Retrieval (CMMR) (2010)

28

https://doi.org/10.15168/11572_399995
https://doi.org/10.5281/zenodo.3672934
https://doi.org/10.1109/IEEECONF59510.2023.10335204
https://doi.org/10.1109/TASLP.2022.3156785
https://doi.org/10.1109/TASLP.2022.3156785
https://doi.org/10.1109/ICASSP40776.2020.9053474
https://doi.org/10.1109/ICASSP40776.2020.9053474


[31] Kehling, C., Abeßer, J., Dittmar, C., Schuller, G.: Automatic tablature transcrip-
tion of electric guitar recordings by estimation of score- and instrument-related
parameters. In: Proc. 17th Int. Conf. on Digital Audio Effects (DAFx 2014), pp.
1–8 (2014)

[32] Barbancho, I., Tzanetakis, G., Barbancho, A.M., Tardón, L.J.: Discrimination
Between Ascending/Descending Pitch Arpeggios. IEEE/ACM Transactions on
Audio Speech and Language Processing 26(11), 2194–2203 (2018) https://doi.
org/10.1109/TASLP.2018.2858538

[33] Traube, C., Depalle, P.: Extraction of the excitation point location on a string
using weighted least-square estimation of a comb filter delay. In: Proc. 6th Int.
Conf. on Digital Audio Effects (DAFx-03) (2003)

[34] Penttinen, H., Välimäki, V.: A time-domain approach to estimating the plucking
point of guitar tones obtained with an under-saddle pickup. Applied Acoustics
65(12 SPEC. ISS.), 1207–1220 (2004) https://doi.org/10.1016/j.apacoust.2004.
04.008

[35] Chen, Y.P., Su, L., Yang, Y.H.: Electric guitar playing technique detection in real-
world recordings based on F0 sequence pattern recognition. In: Proc. 16th Int.
Society for Music Information Retrieval Conference (ISMIR), pp. 708–714 (2015)

[36] Abeßer, J., Lukashevich, H., Schuller, G.: Feature-based extraction of plucking
and expression styles of the electric bass guitar. In: Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing (ICASSP), pp. 2290–2293 (2010). https:
//doi.org/10.1109/ICASSP.2010.5495945

[37] Su, L., Yu, L.-F., Yang, Y.-H.: Sparse Cepstral and Phase Codes for Guitar
Playing Technique Classification. In: Proc. 15th International Society for Music
Information Retrieval Conference (ISMIR), pp. 9–14 (2014)

[38] Su, T.-W., Chen, Y.-P., Su, L., Yang, Y.-H.: TENT: Technique-Embedded Note
Tracking for Real-World Guitar Solo Recordings. Transactions of the Interna-
tional Society for Music Information Retrieval 2(1), 15–28 (2019) https://doi.
org/10.5334/tismir.23

[39] Stowell, D., Plumbley, M.: Adaptive whitening for improved real-time audio onset
detection. In: Proc. Int. Computer Music Conference (ICMC), pp. 312–319 (2007)

[40] Reboursière, L., Lähdeoja, O., Chesini Bose, R., Drugman, T., Dupont, S.,
Picard-Limpens, C., Riche, N.: Guitar as controller. Numediart Quartely Progress
Scientific Report 4(3) (2011)

[41] Reboursière, L., Lähdeoja, O., Drugman, T., Dupont, S., Picard, C., Riche, N.:
Left and right-hand guitar playing techniques detection. In: Proc. 12th Int. Conf.
on New Interfaces for Musical Expression (NIME), pp. 1–4 (2012)

29

https://doi.org/10.1109/TASLP.2018.2858538
https://doi.org/10.1109/TASLP.2018.2858538
https://doi.org/10.1016/j.apacoust.2004.04.008
https://doi.org/10.1016/j.apacoust.2004.04.008
https://doi.org/10.1109/ICASSP.2010.5495945
https://doi.org/10.1109/ICASSP.2010.5495945
https://doi.org/10.5334/tismir.23
https://doi.org/10.5334/tismir.23


[42] Reboursière, L., Dupont, S.: Egt: Enriched guitar transcription. In: Intelligent
Technologies for Interactive Entertainment, pp. 163–168 (2013)

[43] Livshin, A.: Automatic musical instrument recognition and related topics. PhD
thesis, Université Pierre et Marie Curie - Paris VI (December 2007)

[44] Wilkins, J., Seetharaman, P., Wahl, A., Pardo, B.: Vocalset: A singing voice
dataset. In: Proc. 19th Int. Society for Music Information Retrieval Conference
(ISMIR), pp. 468–474 (2018)

[45] Ducher, J.-F., Esling, P.: Folded CQT RCNN For Real-time Recognition of
Instrument Playing Techniques. In: Proc. 20th Int. Society for Music Informa-
tion Retrieval Conference (ISMIR), pp. 708–714 (2019). https://doi.org/10.5281/
zenodo.3527908

[46] Turchet, L., McPherson, A., Barthet, M.: Co-design of a Smart Cajón. Journal
of the Audio Engineering Society 66(4), 220–230 (2018)

[47] Zamborlin, B.: Studies on customisation-driven digital music instruments. PhD
thesis, Goldsmiths, University of London (2015). https://doi.org/10.25602/
GOLD.00012312

[48] Jathal, K.: Real-time timbre classification for tabletop hand drumming. Computer
Music Journal 41(2), 38–51 (2017) https://doi.org/10.1162/COMJ a 00419

[49] Lähdeoja, O.: Augmenting chordophones with hybrid percussive sound possibili-
ties. In: Proc. Int. Conf. on New Interfaces for Musical Expression (NIME), pp.
102–105 (2009). https://doi.org/10.5281/zenodo.1177607

[50] Martelloni, A., McPherson, A., Barthet, M.: Percussive fingerstyle guitar through
the lens of nime: an interview study. In: Proc. Int. Conf. on New Interfaces
for Musical Expression (NIME), pp. 440–445 (2020). https://doi.org/10.5281/
zenodo.4813463

[51] Martelloni, A., McPherson, A., Barthet, M.: Guitar augmentation for percussive
fingerstyle: Combining self-reflexive practice and user-centred design. In: Proc.
Int. Conf. on New Interfaces for Musical Expression (NIME) (2021). https://doi.
org/10.21428/92fbeb44.2f6db6e6

[52] Martelloni, A., McPherson, A.P., Barthet, M.: Real-time percussive technique
recognition and embedding learning for the acoustic guitar. In: Proc. 24th Int.
Society for Music Information Retrieval Conference (ISMIR), pp. 121–128 (2023).
https://doi.org/10.5281/zenodo.10265236

[53] Stefani, D., Turchet, L.: On the Challenges of Embedded Real-Time Music Infor-
mation Retrieval. In: Proc. Int. Conf. on Digital Audio Effects (DAFx20in22),
vol. 3, pp. 177–184 (2022)

30

https://doi.org/10.5281/zenodo.3527908
https://doi.org/10.5281/zenodo.3527908
https://doi.org/10.25602/GOLD.00012312
https://doi.org/10.25602/GOLD.00012312
https://doi.org/10.1162/COMJ_a_00419
https://doi.org/10.5281/zenodo.1177607
https://doi.org/10.5281/zenodo.4813463
https://doi.org/10.5281/zenodo.4813463
https://doi.org/10.21428/92fbeb44.2f6db6e6
https://doi.org/10.21428/92fbeb44.2f6db6e6
https://doi.org/10.5281/zenodo.10265236


[54] Brossier, P.M.: Automatic Annotation of Musical Audio for Interactive Applica-
tions. PhD thesis, Queen Mary University of London (2006)

[55] Stefani, D., Turchet, L.: Bio-Inspired Optimization of Parametric Onset Detec-
tors. In: Proc. 24th Int. Conf. on Digital Audio Effects (DAFx20in21), vol. 2, pp.
268–275 (2021). https://doi.org/10.23919/DAFx51585.2021.9768293

[56] Brent, W.: A timbre analysis and classification toolkit for pure data. In: Proc.
2010 International Computer Music Conference, ICMC (2010)

[57] Ding, H., Feng, P.-M., Chen, W., Lin, H.: Identification of bacteriophage virion
proteins by the ANOVA feature selection and analysis. Molecular BioSystems 10,
2229–2235 (2014) https://doi.org/10.1039/C4MB00316K

[58] McPherson, A., Jack, R., Moro, G.: Action-sound latency: Are our tools fast
enough? In: Proc. Int. Conf. on New Interfaces for Musical Expression (NIME),
pp. 20–25 (2016). https://doi.org/10.5281/zenodo.3964611

[59] Stefani, D., Giudici, G.A., Turchet, L.: On the importance of temporally precise
onset annotations for real-time music information retrieval: Findings from the ag-
pt-set dataset. In: Proc. 19th Int. Audio Mostly Conference, pp. 270–284 (2024).
https://doi.org/10.1145/3678299.3678325

[60] Zhao, Y., Wang, C., Fazekas, G., Benetos, E., Sandler, M.: Violinist identifica-
tion based on vibrato features. In: 29th European Signal Processing Conference
(EUSIPCO), pp. 381–385 (2021). https://doi.org/10.23919/EUSIPCO54536.
2021.9616197

31

https://doi.org/10.23919/DAFx51585.2021.9768293
https://doi.org/10.1039/C4MB00316K
https://doi.org/10.5281/zenodo.3964611
https://doi.org/10.1145/3678299.3678325
https://doi.org/10.23919/EUSIPCO54536.2021.9616197
https://doi.org/10.23919/EUSIPCO54536.2021.9616197

	Introduction
	Background
	Guitar Technology and Augmentations
	IoS, IoMusT and Smart Musical Instruments
	Guitar Technique Recognition
	Percussive Guitar Technique Recognition

	Methodology
	Hardware
	System Architecture
	Onset detection
	Feature extraction
	Classification
	Embedded Deployment

	Latency

	Evaluation
	Data
	Experiment 1: Recognition accuracy under different latency constraints
	Experiment 2: Generalization performance and the performer-instrument effect
	Experiment 3: Specialization performance and performer individuality

	Results And Discussion
	Experiment 1: Latency and accuracy
	Experiment 2: Generalization performance and the performer-instrument effect
	Experiment 3: Specialization performance and performer individuality

	Conclusions
	List Of Abbreviations
	Declarations
	Availability of data and materials
	Competing interests
	Funding
	Authors' contributions
	Acknowledgements


